Exercise 4B

1 a $|z+3|=3|z-5|$

$$
\begin{aligned}
& \Rightarrow|x+\mathrm{i} y+3|=3|x+\mathrm{i} y-5| \\
& \Rightarrow|(x+3)+\mathrm{i} y|=3|(x-5)+\mathrm{i} y| \\
& \Rightarrow|(x+3)+\mathrm{i} y|^{2}=3^{2}|(x-5)+\mathrm{i} y|^{2} \\
& \Rightarrow(x+3)^{2}+y^{2}=9\left[(x-5)^{2}+y^{2}\right] \\
& \Rightarrow x^{2}+6 x+9+y^{2}=9\left[\left(x^{2}-10 x+25+y^{2}\right)\right] \\
& \Rightarrow x^{2}+6 x+9+y^{2}=9 x^{2}-90 x+225+9 y^{2} \\
& \Rightarrow 0=8 x^{2}-96 x+8 y^{2}+216 \quad(\div 8) \\
& \Rightarrow x^{2}-12 x+y^{2}+27=0 \\
& \Rightarrow(x-6)^{2}-36+y^{2}+27=0 \\
& \Rightarrow(x-6)^{2}+y^{2}-9=0 \\
& \Rightarrow(x-6)^{2}+y^{2}=9
\end{aligned}
$$

The Cartesian equation of the locus of z is $(x-6)^{2}+y^{2}=9$.
This is a circle centre $(6,0)$, radius $=3$

b

$$
\begin{aligned}
& |z-3|=4|z+1| \\
& \begin{array}{l}
|x+\mathrm{i} y-3|=4|x+\mathrm{i} y+1| \\
|x-3+\mathrm{i} y|^{2}=16|x+1+\mathrm{i} y|^{2} \\
(x-3)^{2}+y^{2}=16\left((x+1)^{2}+y^{2}\right) \\
x^{2}-6 x+9+y^{2}=16\left(x^{2}+2 x+1+y^{2}\right) \\
\quad=16 x^{2}+32 x+16+16 y^{2}
\end{array} \\
& \begin{array}{l}
15 x^{2}+38 x+15 y^{2}+7=0 \\
x^{2}+\frac{38}{15} x+y^{2}+\frac{7}{15}=0 \\
\left(x+\frac{19}{15}\right)^{2}-\frac{19^{2}}{15^{2}}+y^{2}+\frac{7}{15}=0 \\
\left(x+\frac{19}{15}\right)^{2}+y^{2}=\frac{256}{225}
\end{array}
\end{aligned}
$$

Circle centre $\left(-\frac{19}{15}, 0\right)$ radius $\frac{16}{15}$

INTERNATIONAL A LEVEL

1 c

$|z-\mathrm{i}|=2|z+\mathrm{i}|$
$|x+\mathrm{i} y-\mathrm{i}|=2|x+\mathrm{i} y+\mathrm{i}|$
$|x+\mathrm{i}(y-1)|^{2}=4|x+\mathrm{i}(y+1)|^{2}$
$x^{2}+(y-1)^{2}=4\left[x^{2}+(y+1)^{2}\right]$
$x^{2}+y^{2}-2 y+1=4\left(x^{2}+y^{2}+2 y+1\right)$
$=4 x^{2}+4 y^{2}+8 y+4$
$3 x^{2}+3 y^{2}+10 y+3=0$
$x^{2}+y^{2}+\frac{10}{3} y+1=0$
$x^{2}+\left(y+\frac{5}{3}\right)^{2}-\frac{25}{9}+1=0$
$x^{2}+\left(y+\frac{5}{3}\right)^{2}=\frac{16}{9}$
Circle centre $\left(0,-\frac{5}{3}\right)$ radius $\frac{4}{3}$
d

$|z+2-7 \mathrm{i}|=2|z-10+2 \mathrm{i}|$
$|x+\mathrm{i} y+2-7 \mathrm{i}|=2|x+\mathrm{i} y-10+2 \mathrm{i}|$
$|(x+2)+\mathrm{i}(y-7)|^{2}=4|(x-10)+\mathrm{i}(y+2)|^{2}$
$(x+2)^{2}+(y-7)^{2}=4\left[(x-10)^{2}+(y+2)^{2}\right]$
$x^{2}+4 x+4+y^{2}-14 y+49=4\left[x^{2}-20 x+100+y^{2}+4 y+4\right.$
$3 x^{2}-84 x+3 y^{2}+30 y+363=0$
$x^{2}-28 x+y^{2}+10 y+121=0$
$(x-14)^{2}-14^{2}+(y+5)^{2}-5^{2}+121=0$
$(x-14)^{2}+(y+5)^{2}=100$
Circle centre $(14,-5)$ radius 10
e

$$
\begin{aligned}
& |z+4-2 \mathrm{i}|=2|z-2-5 \mathrm{i}| \\
& |x+\mathrm{i} y+4-2 \mathrm{i}|=2|x+\mathrm{i} y-2-5 \mathrm{i}| \\
& |(x+4)+\mathrm{i}(y-2)|^{2}=4|(x-2)+\mathrm{i}(y-5)|^{2} \\
& (x+4)^{2}+(y-2)^{2}=4\left[(x-2)^{2}+(y-5)^{2}\right] \\
& x^{2}+8 x+16+y^{2}-4 y+4=4\left[x^{2}-4 x+4\right. \\
& \left.\quad+y^{2}-10 y+25\right]
\end{aligned}
$$

$3 x^{2}-24 x+3 y^{2}+36 y+96=0$
$x^{2}-8 x+y^{2}-12 y+32=0$
$(x-4)^{2}-16+(y-6)^{2}-36+32=0$
$(x-4)^{2}+(y-6)^{2}=20$
Circle centre $(4,6)$ radius $\sqrt{20}=2 \sqrt{5}$

Further Pure Maths 2

Solution Bank

$$
\begin{aligned}
& |z|=2|2-z| \\
& \quad=2|-1||z-2| \\
& |x+\mathrm{i} y|=2 \times 1 \times|x+\mathrm{i} y-2| \\
& x^{2}+y^{2}=4\left((x-2)^{2}+y^{2}\right) \\
& x^{2}+y^{2}=4\left(x^{2}-4 x+4+y^{2}\right) \\
& 3 x^{2}-16 x+3 y^{2}+16=0 \\
& x^{2}-\frac{16}{3} x+y^{2}+\frac{16}{3}=0 \\
& \left(x-\frac{8}{3}\right)^{2}-\frac{64}{9}+y^{2}+\frac{16}{3}=0 \\
& \left(x-\frac{8}{3}\right)^{2}+y^{2}=\frac{16}{9}
\end{aligned}
$$

Circle centre $\left(\frac{8}{3}, 0\right)$ radius $\frac{4}{3}$

2 a

$\arg \left(\frac{z}{z+3}\right)=\frac{\pi}{4}$
$\arg z-\arg (z+3)=\frac{\pi}{4}$
$\arg z-\arg (z-(-3))=\frac{\pi}{4}$
$\arg z=\theta$
$\arg (z-(-3))=\phi$
$\theta-\phi=\frac{\pi}{4}$
$\theta=\phi+\frac{\pi}{4}$
P lies on an arc of a circle cut off at
$A(-3,0)$ and $O(0,0)$
Angle at the centre is twice the angle at the circumference $\therefore \frac{\pi}{2}$
It follows that the centre is at $\left(-\frac{3}{2}, \frac{3}{2}\right)$
and the radius is $\frac{3}{2} \sqrt{2}$

Further Pure Maths 2

2 b

$\arg \left(\frac{z-3 \mathrm{i}}{z+4}\right)=\frac{\pi}{6}$
$\arg (z-3 \mathrm{i})-\arg (z-(-4))=\frac{\pi}{6}$
$\arg (z-3 \mathrm{i})=\theta$.
$\arg (z-(-4))=\phi$
$\theta-\phi=\frac{\pi}{6}$
Arc of a circle from $(-4,0)$ to $(0,3)$

(The centre is at $\left(-\frac{4+3 \sqrt{3}}{2}, \frac{3+4 \sqrt{3}}{2}\right)$, though you do not need to calculate this for a sketch.)

Further Pure Maths 2

2 c

$$
\begin{aligned}
& \arg \left(\frac{z}{z-2}\right)=\frac{\pi}{3} \\
& \arg z=\theta \\
& \arg (z-2)=\phi \\
& \theta-\phi=\frac{\pi}{3}
\end{aligned}
$$

As our diagram has $\phi>\theta$, we have P on the wrong side of the line joining O or ϕ.

We want the arc below the x-axis.
Redrawing:

$\arg z=-\theta$
$\arg (z-2)=-\phi$
Hence $\arg z-\arg (z-2)=\frac{\pi}{3}$
becomes $-\theta-(-\phi)=\frac{\pi}{3}$
$\phi=\theta+\frac{\pi}{3}$
Arc of a circle, ends 0 and 2 , subtending angle $\frac{\pi}{3}$

(The centre is at $\left(1,-\frac{1}{\sqrt{3}}\right)$ radius $\frac{2 \sqrt{3}}{3}$ not needed to be calculated for a sketch)

2 d

$$
\begin{aligned}
& \arg \left(\frac{z-3 \mathrm{i}}{z-5}\right)=\frac{\pi}{4} \\
& \arg (z-3 \mathrm{i})-\arg (z-5)=\frac{\pi}{4} \\
& \arg (z-3 \mathrm{i})=\theta \\
& \arg (z-5)=\phi \\
& \theta-\phi=\frac{\pi}{4}
\end{aligned}
$$

But $\phi>\theta$, we have P on the wrong side of the line joining 3 i and 5.

$$
\begin{aligned}
& \arg (z-3 \mathrm{i})=-\theta \\
& \arg (z-5)=-\phi \\
& -\theta-(-\phi)=\frac{\pi}{4}
\end{aligned}
$$

$$
\phi=\theta+\frac{\pi}{4}
$$

(Arc of circle centre $(1,-1)$ radius $\sqrt{17}$ not needed for sketch)

INTERNATIONAL A LEVEL

Further Pure Maths 2

2 e

f

$$
\begin{aligned}
& \arg \left(\frac{z-4 \mathrm{i}}{z+4}\right)=\frac{\pi}{2} \\
& \arg (z-4 \mathrm{i})-\arg (z+4)=\frac{\pi}{2} \\
& \arg (z-4 \mathrm{i})=\theta \\
& \arg (z+4)=\phi=\arg (z-(-4 \mathrm{i})) \\
& \theta-\phi=\frac{\pi}{2} \\
& \theta=\phi+\frac{\pi}{2}
\end{aligned}
$$

The locus is an arc of a circle, ends at -4 and 4 i , angle subtended being $\frac{\pi}{2}$
\therefore It is a semi-circle.

(Circle arc has centre $(-2,2)$, radius $2 \sqrt{2}$)

Further Pure Maths 2

3 a $|z+1+\mathrm{i}|=2|z+4-2 \mathrm{i}|$
$\Rightarrow|x+\mathrm{i} y+1+\mathrm{i}|=2|x+\mathrm{i} y+4-2 \mathrm{i}|$
$\Rightarrow|(x+1)+\mathrm{i}(y+1)|=2|(x+4)+\mathrm{i}(y-2)|$
$\Rightarrow|(x+1)+\mathrm{i}(y+1)|^{2}=2^{2}|(x+4)+\mathrm{i}(y-2)|^{2}$
$\Rightarrow(x+1)^{2}+(y+1)^{2}=4\left[(x+4)^{2}+(y-2)^{2}\right]$
$\Rightarrow x^{2}+2 x+1+y^{2}+2 y+1=4\left[\left(x^{2}+8 x+16+y^{2}-4 y+4\right]\right.$
$\Rightarrow x^{2}+2 x+1+y^{2}+2 y+1=4 x^{2}+32 x+64+4 y^{2}-16 y+16$
$\Rightarrow 0=3 x^{2}+30 x+3 y^{2}-18 y+64+16-1-1$
$\Rightarrow 3 x^{2}+30 x+3 y^{2}-18 y+78=0$
$\Rightarrow x^{2}+10 x+y^{2}-6 y+26=0$
$\Rightarrow(x+5)^{2}-25+(y-3)^{2}-9+26=0$
$\Rightarrow(x+5)^{2}+(y-3)^{2}=25+9-26$
$\Rightarrow(x+5)^{2}+(y-3)^{2}=8$
Therefore the locus of P is a circle centre $(-5,3)$. (as required)
b radius $=\sqrt{8}=\sqrt{4} \sqrt{2}=2 \sqrt{2}$
The exact radius is $2 \sqrt{2}$.
4 a $\arg (z)-\arg (z+4)=\frac{\pi}{4}$
$\Rightarrow \theta-\phi=\frac{\pi}{4}$, where $\arg (z)=\theta$ and $\arg (z+4)=\phi$

> from $\triangle A O P$,
> $A \hat{P} O+\phi=\theta$
> $\Rightarrow A \hat{P} O=\theta-\phi$
> $\Rightarrow A \hat{P} O=\frac{\pi}{4}$

The locus of points P is an arc of a circle cut off at $(-4,0)$ and $(0,0)$, as shown below.

Further Pure Maths 2

Solution Bank
P Pearson
4 b

Therefore the centre of the circle has coordinates $(-2,2)$.
c $r=\sqrt{2^{2}+2^{2}}=\sqrt{8}=\sqrt{4} \sqrt{2}=2 \sqrt{2}$
Therefore, the radius of C is $2 \sqrt{2}$.
d The Cartesian equation of C is $(x+2)^{2}+(y-2)^{2}=8$.

Further Pure Maths 2

4 e Finite area $=$ Area of major sector $A C O+$ Area $\triangle A C O$

$$
\begin{aligned}
& =\frac{1}{2}(\sqrt{8})^{2}\left(2 \pi-\frac{\pi}{2}\right)+\frac{1}{2}(4)(2) \\
& =\frac{1}{2}(8)\left(2 \pi-\frac{\pi}{2}\right)+4 \\
& =4\left(\frac{3 \pi}{2}\right)+4 \\
& =6 \pi+4
\end{aligned}
$$

Finite area bounded by the locus of P and the x-axis is $6 \pi+4$.
b, c, d Method (2):

$$
\begin{aligned}
\arg z-\arg (z+4) & =\arg \left(\frac{z}{z+4}\right) \\
& =\arg \left(\frac{x+\mathrm{i} y}{x+\mathrm{i} y+4}\right) \\
& =\arg \left[\frac{x+\mathrm{i} y}{(x+4)+\mathrm{i} y}\right] \\
& =\arg \left[\frac{x+\mathrm{i} y}{(x+4)+\mathrm{i} y} \times \frac{(x+4)-\mathrm{i} y}{(x+4)-\mathrm{i} y}\right] \\
& =\arg \left[\frac{x(x+4)-\mathrm{i} y x+\mathrm{i} y(x+4)+y^{2}}{(x+4)^{2}+y^{2}}\right] \\
& =\arg \left[\left(\frac{x(x+4)+y^{2}}{(x+4)^{2}+y^{2}}\right)+\mathrm{i}\left(\frac{y(x+4)-y x}{(x+4)^{2}+y^{2}}\right)\right] \\
& =\arg \left[\left(\frac{x^{2}+4 x+y^{2}}{(x+4)^{2}+y^{2}}\right)+\mathrm{i}\left(\frac{x y+4 y-x y}{(x+4)^{2}+y^{2}}\right)\right] \\
& =\arg \left[\left(\frac{x^{2}+4 x+y^{2}}{(x+4)^{2}+y^{2}}\right)+\mathrm{i}\left(\frac{4 y}{(x+4)^{2}+y^{2}}\right)\right]
\end{aligned}
$$

Applying $\arg \left(\frac{z}{z+4}\right)=\frac{\pi}{4} \Rightarrow \frac{\left(\frac{4 y}{(x+4)^{2}+y^{2}}\right)}{\left(\frac{x^{2}+4 x+y^{2}}{(x+4)^{2}+y^{2}}\right)}=\tan \left(\frac{\pi}{4}\right)=1$

$$
\Rightarrow \frac{4 y}{x^{2}+4 x+y^{2}}=1
$$

$$
\Rightarrow 4 y=x^{2}+4 x+y^{2}
$$

$$
\Rightarrow 0=x^{2}+4 x+y^{2}-4 y
$$

$$
\Rightarrow(x+2)^{2}-4+(y-2)^{2}-4=0
$$

$$
\Rightarrow(x+2)^{2}+(y-2)^{2}=8
$$

$$
\Rightarrow(x+2)^{2}+(y-2)^{2}=(2 \sqrt{2})^{2}
$$

C is a circle with centre $(-2,2)$, radius $2 \sqrt{2}$ and has Cartesian equation $(x+2)^{2}+(y-2)^{2}=8$.

Further Pure Maths 2

5 a Curve F is described by $|z|=2|z+4|$. First, note that z can be written as $z=x+\mathrm{i} y$:
$|x+y i|=|2 x+2 y i+8|$. Next, group the real and imaginary parts
$|x+y i|=2|(x+4)+y i|$. Square both sides
$|x+y i|^{2}=2^{2}|(x+4)+y i|^{2}$
$x^{2}+y^{2}=4(x+4)^{2}+4 y^{2}$
$x^{2}+y^{2}=4\left(x^{2}+8 x+16\right)+4 y^{2}$
$x^{2}+y^{2}=4 x^{2}+32 x+64+4 y^{2}$
$4 x^{2}+32 x+64-x^{2}+4 y^{2}-y^{2}=0$
$3 x^{2}+32 x+3 y^{2}+64=0$
$x^{2}+\frac{32}{3} x+y^{2}+\frac{64}{3}=0$
Completing the square for x
$\left(x+\frac{16}{3}\right)^{2}+y^{2}=\frac{64}{9}=\left(\frac{8}{3}\right)^{2}$
Thus we see that F is a circle centred at $\left(-\frac{16}{3}, 0\right)$ with radius $r=\frac{8}{3}$
b

c The circle is centred at $\left(-\frac{16}{3}, 0\right)$ and its radius is $r=\frac{8}{3}$. This means that it stretches out from $-\frac{8}{3}$ to $\frac{8}{3}$ along the imaginary axis. Thus $-\frac{8}{3} \leqslant \operatorname{Im}(z) \leqslant \frac{8}{3}$

INTERNATIONAL A LEVEL

Further Pure Maths 2

6 We are given curve defined by $|z-8|=2|z-2-6 \mathrm{i}|$. To visualise this, express z as real and imaginary parts and square both sides

$$
\begin{aligned}
& |x-8+y \mathrm{i}|=2|x-2+y \mathrm{i}-6 \mathrm{i}| \\
& |x-8+y \mathrm{i}|^{2}=2^{2}|x-2+y \mathrm{i}-6 \mathrm{i}|^{2} \\
& (x-8)^{2}+y^{2}=4(x-2)^{2}+4(y-6)^{2} \\
& x^{2}-16 x+64+y^{2}=4 x^{2}-16 x+16+4 y^{2}-48 y+144 \\
& 3 x^{2}+3 y^{2}-48 y+96=0 \\
& x^{2}+y^{2}-16 y+32=0 \\
& x^{2}+(y-8)^{2}-64+32=0 \\
& x^{2}+(y-8)^{2}=32=(4 \sqrt{2})^{2}
\end{aligned}
$$

So this curve is a circle centred at $(0,8)$ with radius $r=4 \sqrt{2}$. Now the largest and smallest values of $\arg (z)$ will be found at the points of tangency of the circle to the lines going through the origin.
These are shown below as z_{1} and z_{2}.

We can calculate the distance x from the origin to A using Pythagoras Theorem:
$x^{2}+r^{2}=8^{2}$
$x^{2}=64-32$
$x=4 \sqrt{2}=r$
So the triangle created by the origin, z_{1} and the centre of the circle is a right-angled isosceles triangle, so the angle $\triangleleft C O A=\frac{\pi}{4}$. Similarly, $\triangleleft C O B=\frac{\pi}{4}$. Thus we conclude that $\arg \left(z_{1}\right)=\frac{\pi}{4}$ and $\arg \left(z_{2}\right)=\frac{3 \pi}{4}$. So for any z lying on this circle we have $\frac{\pi}{4} \leqslant \arg (z) \leqslant \frac{3 \pi}{4}$

INTERNATIONAL A LEVEL

Further Pure Maths 2

7 a We want to sketch the curve S satisfying $\arg \left(\frac{w-8 \mathrm{i}}{w+6}\right)=\frac{\pi}{2}$. We have
$\arg \left(\frac{w-8 \mathrm{i}}{w+6}\right)=\arg (w-8 \mathrm{i})-\arg (w+6)=\alpha-\beta=\frac{\pi}{2}$, where $\arg (w-8 \mathrm{i})=\alpha$ and $\arg (w+6)=\beta$. Since the constant angle is $\frac{\pi}{2}, S$ is a semicircle from $(0,8)$ anticlockwise to $(-6,0)$ but not including these two points.

b The centre of this semicircle lies in the middle of the line connecting $(-6,0)$ and $(0,8)$, i.e. at $(-3,4)$. The radius can be found be using Pythagoras Theorem:
$r^{2}=3^{2}+4^{2}=25$
$r=5$
Thus the Cartesian equation for S can be written as $(x+3)^{2}+(y-4)^{2}=25, x<0, y>0$.
Remember to specify the range of x and y. Here the inequalities are strict since $(-6,0)$ and $(0,8)$ are not included in the curve.
c The argument of an imaginary number z is the angle between the line connecting z to the origin and the real axis.

For curve S the smallest such angle is for $z=8 i$ and the largest for $z=-6$. Remember that the endpoints are not included in the curve, so we have $\frac{\pi}{2}<\arg (z)<\pi$

INTERNATIONAL A LEVEL

Further Pure Maths 2

$7 \mathbf{d}$ The point furthest to the left is $-8+4 i$, so the smallest possible value of $\operatorname{Re}(z)$ is -8 . The endpoints of the semicircle are not included in the curve, so we need to use a strict inequality for the largest value of $\operatorname{Re}(z)$. Thus $-8 \leqslant \operatorname{Re}(z)<0$.

8 We have $\arg (z-1)-\arg (z+3)=\frac{3 \pi}{4}, z \neq-3$. Let L_{1} be the half-line satisfying $\arg (z-1)=\alpha$ and L_{2} be the half-line satisfying $\arg (z+3)=\beta$. From the initial equation we have $\alpha-\beta=\frac{3 \pi}{4}$

Now considering the triangle APB we see that

$$
P \hat{B} A+A \hat{P} B=D \hat{A} P
$$

$$
A \hat{P} B=D \hat{A} P-P \hat{B} A=\alpha-\beta=\frac{3 \pi}{4}
$$

So, as α and β vary, the angle $A P B$ remains constant at $\frac{3 \pi}{4}$
So the locus will be an arc going anticlockwise from A to B :

Further Pure Maths 2

8 (continued)

Now we know that the centre of this circle lies on the perpendicular bisector of the line segment connecting A and B, which has equation $x=-1$. Let C be the centre of this circle.

We know that $A \hat{D} B=\frac{3 \pi}{4}$, so $B \hat{C} A=2 \pi-2 A \hat{D} B=\frac{\pi}{2}$.
So $A C B$ is an isosceles, right-angled triangle.
So we have:
$r^{2}+r^{2}=4^{2}$
$r^{2}=8$
$r=2 \sqrt{2}$
Now, using Pythagoras Theorem again, on triangle $B E C$ we have that
$C E^{2}+2^{2}=r^{2}$
$C E^{2}=4$
$C E=2$
So the centre has coordinates $C=(-1,-2)$ and the Cartesian equation of this locus can be written as $(x+1)^{2}+(y+2)^{2}=8, y>0$.

9 a

By considering the triangle APB , we have that
$P \hat{B} A+A \hat{P} B=O \hat{A} P$
$A \hat{P} B=O \hat{A} P-P \hat{B} A$
$O \hat{A} P-P \hat{B} A=\frac{\pi}{4}$
Moreover, we know that angles in the same segment of a circle are equal, so we're looking for all numbers z for which $\arg (z+2)-\arg (z+5)=\frac{\pi}{4}$
Thus the equation describing this locus is $\arg \left(\frac{z+2}{z+5}\right)=\frac{\pi}{4}$
b

Similar to example a, we have
$\arg (z-i)-\arg (z-4 i)=\frac{\pi}{6}$
So $\arg \left(\frac{z-\mathrm{i}}{z-4 \mathrm{i}}\right)=\frac{\pi}{6}$

Further Pure Maths 2

9 c

Using the same the same techniques as for part \mathbf{a} and \mathbf{b} we have that the locus can be described as $\arg (z-(6+\mathrm{i}))-\arg (z-(1+2 \mathrm{i}))=\frac{2 \pi}{3}$
$\arg (z-6-\mathrm{i})-\arg (z-1-2 \mathrm{i})=\frac{2 \pi}{3}$
$\arg \left(\frac{z-6-\mathrm{i}}{z-1-2 \mathrm{i}}\right)=\frac{2 \pi}{3}$
10 a We have $|z+3|=3|z-5|$. By representing z as real and imaginary parts and squaring both sides of the equation we see that:

$$
\begin{aligned}
& |x+3+y i|=3|x-5+y i| \\
& |x+3+y i|^{2}=9|x-5+y i|^{2} \\
& (x+3)^{2}+y^{2}=9(x-5)^{2}+9 y^{2} \\
& x^{2}+6 x+9+y^{2}=9 x^{2}-90 x+225+9 y^{2} \\
& 8 x^{2}-96 x+216+8 y^{2}=0 \\
& x^{2}+y^{2}-12 x+27=0
\end{aligned}
$$

as required.
b The above equation can be rewritten as follows:

$$
\begin{aligned}
& (x-6)^{2}-36+y^{2}+27=0 \\
& (x-6)^{2}+y^{2}=9 \\
& (x-6)^{2}+y^{2}=3^{2}
\end{aligned}
$$

So the equation describes a circle centred at $(6,0)$ with radius $r=3$

INTERNATIONAL A LEVEL

Further Pure Maths 2

10 c We have that $\arg \left(z_{1}\right)=\frac{\pi}{6}$ and that $z_{1} \in C$. If we write $z_{1}=r(\cos \theta+i \sin \theta)$ where $\theta=\frac{\pi}{6}$, we see that $z_{1}=\frac{\sqrt{3}}{2} r+\frac{1}{2} r i$. Moreover, we know that z_{1} lies on the circle, so if we write $z_{1}=x+y \mathrm{i}, x$ and y must satisfy $(x-6)^{2}+y^{2}=3^{2}$. Comparing the two expressions for z_{1}, we obtain $x=\frac{\sqrt{3}}{2} r, y=\frac{1}{2} r$ - Substituting these values into the circle equation we have:
$\left(\frac{\sqrt{3}}{2} r-6\right)^{2}+\left(\frac{1}{2} r\right)^{2}=9$
$\frac{3}{4} r^{2}-6 r \sqrt{3}+36+\frac{1}{4} r^{2}=9$
$r^{2}-6 r \sqrt{3}+27=0$
$(r-3 \sqrt{3})^{2}=0$
$r=3 \sqrt{3}$
Thus we can write $z_{1}=3 \sqrt{3}\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)$
11 a We have the locus of points P satisfying $\left|z-z_{1}\right|=k\left|z-z_{2}\right|$. Moreover, we know that $A P=2 B P$, $A=(0,6), B=(3,0)$. Thus we can write $|z-6 i|=2|z-3|$.
b Write $z=x+y$ and square both sides of equation derived in part a:
$|x+y \mathrm{i}-6 \mathrm{i}|=2|x-3+y \mathrm{i}|$
$|x+y \mathrm{i}-6 \mathrm{i}|^{2}=4|x-3+y \mathrm{i}|^{2}$
$x^{2}+(y-6)^{2}=4(x-3)^{2}+4 y^{2}$
$x^{2}+y^{2}-12 y+36=4 x^{2}-24 x+36+4 y^{2}$
$3 x^{2}-24 x+3 y^{2}+12 y=0$
$x^{2}+y^{2}-8 x+4 y=0$
as required.
c The equation for circle C derived in part \mathbf{b} can be written as $(x-4)^{2}+(y+2)^{2}=20=(2 \sqrt{5})^{2}$. This means the circle is centred at $(4,-2)$ and has radius $r=2 \sqrt{5}$. We are given the locus of points w satisfying $\arg (w-6)=\alpha$ and α passes through the centre of the circle. The centre is at point $c=4-2 \mathrm{i}$ and we know that, since the centre lies in the $4^{\text {th }}$ quadrant, $\frac{\operatorname{Im}(c)}{\operatorname{Re}(c)}=\tan (2 \pi-\alpha)$.
Thus we can write $\tan (2 \pi-\alpha)=-\frac{1}{2}$ and so, since $\alpha \in(0,2 \pi)$, we have that
$2 \pi-\alpha=\tan ^{-1}\left(-\frac{1}{2}\right) \approx-0.46$
$\alpha \approx 5.82$

INTERNATIONAL A LEVEL

Further Pure Maths 2

11 d We know that Q satisfies both $\arg (w-6)=\alpha$ and $m+n=b$, since it lies on the intersection of the line and the circle. Thus, writing $q=x_{1}+y_{1} \mathrm{i}$ we have $\frac{y_{1}}{x_{1}}=-\frac{1}{2} \Rightarrow x_{1}=-2 y_{1}$.
Substituting this into the circle equation, we obtain:

$$
\begin{aligned}
& 4 y_{1}^{2}+y_{1}^{2}+16 y_{1}+4 y_{1}=0 \\
& 5 y_{1}^{2}+20 y_{1}=0 \\
& y_{1}\left(y_{1}+4\right)=0 \\
& y_{1}=0 \text { or } y_{1}=-4
\end{aligned}
$$

$y_{1}=0$ leads to $x_{1}=0$, so the origin. Thus we take $y_{1}=-4$ and $x_{1}=8$. So $Q=(8,-4)$.

Challenge

The equation $|z-a|+|z+a|=b$ describes all points P for which the sum of distances from a and $-a$ is equal to b. According to the graph above, we have $m+n=b$. This is exactly the definition of an ellipse with foci at a and $-a$ and the major axis of length b.

