Solution Bank

Exercise 4B

1 a
$$|z+3|=3|z-5|$$

 $\Rightarrow |x+iy+3|=3|x+iy-5|$
 $\Rightarrow |(x+3)+iy|=3|(x-5)+iy|$
 $\Rightarrow |(x+3)+iy|^2=3^2|(x-5)+iy|^2$
 $\Rightarrow (x+3)^2+y^2=9[(x-5)^2+y^2]$
 $\Rightarrow x^2+6x+9+y^2=9[(x^2-10x+25+y^2)]$
 $\Rightarrow x^2+6x+9+y^2=9x^2-90x+225+9y^2$
 $\Rightarrow 0=8x^2-96x+8y^2+216$ (÷8)
 $\Rightarrow x^2-12x+y^2+27=0$
 $\Rightarrow (x-6)^2-36+y^2+27=0$
 $\Rightarrow (x-6)^2+y^2-9=0$
 $\Rightarrow (x-6)^2+y^2=9$

The Cartesian equation of the locus of z is $(x-6)^2 + y^2 = 9$.

This is a circle centre (6, 0), radius = 3

$$|z-3|=4|z+1|$$

$$|x+iy-3|=4|x+iy+1|$$

$$|x-3+iy|^{2}=16|x+1+iy|^{2}$$

$$(x-3)^{2}+y^{2}=16((x+1)^{2}+y^{2})$$

$$x^{2}-6x+9+y^{2}=16(x^{2}+2x+1+y^{2})$$

$$=16x^{2}+32x+16+16y^{2}$$

$$15x^{2}+38x+15y^{2}+7=0$$

$$x^{2}+\frac{38}{15}x+y^{2}+\frac{7}{15}=0$$

$$\left(x+\frac{19}{15}\right)^{2}-\frac{19^{2}}{15^{2}}+y^{2}+\frac{7}{15}=0$$

$$\left(x+\frac{19}{15}\right)^{2}+y^{2}=\frac{256}{225}$$
Circle centre $\left(-\frac{19}{15},0\right)$ radius $\frac{16}{15}$

1 c

Further Pure Maths 2

$$|z+2-7i| = 2 |z-10+2i|$$

$$|x+iy+2-7i| = 2 |x+iy-10+2i|$$

$$|(x+2)+i(y-7)|^{2} = 4 |(x-10)+i(y+2)|^{2}$$

$$(x+2)^{2} + (y-7)^{2} = 4[(x-10)^{2} + (y+2)^{2}]$$

$$x^{2} + 4x + 4 + y^{2} - 14y + 49 = 4[x^{2} - 20x + 100 + y^{2} + 4y + 4]$$

$$3x^{2} - 84x + 3y^{2} + 30y + 363 = 0$$

$$x^{2} - 28x + y^{2} + 10y + 121 = 0$$

$$(x-14)^{2} - 14^{2} + (y+5)^{2} - 5^{2} + 121 = 0$$

$$(x-14)^{2} + (y+5)^{2} = 100$$

Circle centre (14, -5) radius 10

$$|z+4-2i|=2|z-2-5i|$$

$$|x+iy+4-2i|=2|x+iy-2-5i|$$

$$|(x+4)+i(y-2)|^{2}=4|(x-2)+i(y-5)|^{2}$$

$$(x+4)^{2}+(y-2)^{2}=4[(x-2)^{2}+(y-5)^{2}]$$

$$x^{2}+8x+16+y^{2}-4y+4=4[x^{2}-4x+4+y^{2}-10y+25]$$

$$3x^{2}-24x+3y^{2}+36y+96=0$$

$$x^{2}-8x+y^{2}-12y+32=0$$

$$(x-4)^{2}-16+(y-6)^{2}-36+32=0$$

$$(x-4)^{2}+(y-6)^{2}=20$$
Circle centre (4,6) radius $\sqrt{20} = 2\sqrt{5}$

1 f

2 a

Further Pure Maths 2

Im /

0

$$\arg\left(\frac{z}{z+3}\right) = \frac{\pi}{4}$$

$$\arg z - \arg(z+3) = \frac{\pi}{4}$$

$$\arg z - \arg(z - (-3)) = \frac{\pi}{4}$$

$$\arg(z - (-3)) = \phi$$

$$\theta - \phi = \frac{\pi}{4}$$

$$\theta = \phi + \frac{\pi}{4}$$

Plies on an arc of a circle cut off at A(-3,0) and O(0,0)

Angle at the centre is twice the angle at the

circumference
$$\therefore \frac{\pi}{2}$$

It follows that the centre is at $\left(-\frac{3}{2},\frac{3}{2}\right)$

$$-\frac{3}{2},\frac{3}{2}$$

and the radius is
$$\frac{3}{2}\sqrt{2}$$

Solution Bank

 $\arg\left(\frac{z-3i}{z+4}\right) = \frac{\pi}{6}$ $\arg(z-3i) - \arg(z-(-4)) = \frac{\pi}{6}$ $\arg(z-3i) = \theta.$ $\arg(z-(-4)) = \phi$ $\theta - \phi = \frac{\pi}{6}$ Arc of a circle from (-4,0) to (0,3)

 $\left(\text{The centre is at}\left(-\frac{4+3\sqrt{3}}{2},\frac{3+4\sqrt{3}}{2}\right),\text{ though you do not need to calculate this for a sketch.}\right)$

2 c

Further Pure Maths 2

P θ ϕ x

$$\arg\left(\frac{z}{z-2}\right) = \frac{\pi}{3}$$
$$\arg z = \theta$$
$$\arg(z-2) = \phi$$
$$\theta - \phi = \frac{\pi}{3}$$

Solution Bank

As our diagram has $\phi > \theta$, we have P on the wrong side of the line joining O or ϕ .

We want the arc below the *x*-axis.

Redrawing:

 $\arg z = -\theta$ $\arg(z - 2) = -\phi$ Hence $\arg z - \arg(z - 2) = \frac{\pi}{3}$ becomes $-\theta - (-\phi) = \frac{\pi}{3}$ $\phi = \theta + \frac{\pi}{3}$

Arc of a circle, ends 0 and 2, subtending angle $\frac{\pi}{3}$

 $\left(\text{The centre is at } \left(1, -\frac{1}{\sqrt{3}}\right) \text{ radius } \frac{2\sqrt{3}}{3} \text{ not needed} \right)$ to be calculated for a sketch

5

2 d

Further Pure Maths 2

 $\arg\left(\frac{z-3i}{z-5}\right) = \frac{\pi}{4}$ $\arg(z-3i) - \arg(z-5) = \frac{\pi}{4}$ $\arg(z-3i) = \theta$ $\arg(z-5) = \phi$ $\theta - \phi = \frac{\pi}{4}$

But $\phi > \theta$, we have *P* on the wrong side of the line joining 3i and 5.

$$\arg(z - 3i) = -\theta$$
$$\arg(z - 5) = -\phi$$
$$-\theta - (-\phi) = \frac{\pi}{4}$$
$$\phi = \theta + \frac{\pi}{4}$$

(Arc of circle centre (1, -1) radius $\sqrt{17}$ not needed for sketch)

Further Pure Maths 2

2 e (2-3i) $\frac{\pi}{3}\phi$ (2-3i) $\frac{\pi}{3}\phi$ (2-3i) $\frac{\pi}{3}\phi$ (2-3i) $\frac{\pi}{3}\phi$ $arg z - arg(z-2-3i) = \frac{\pi}{3}$ (2+3i)

$$\arg z - \arg(z - 2 + 3i) = \frac{\pi}{3}$$
$$\arg z - \arg(z - (2 - 3i)) = \frac{\pi}{3}$$
$$\arg z = -\theta$$
$$\arg(z - (2 - 3i)) = -\phi$$
$$-\theta - (-\phi) = \frac{\pi}{3}$$
$$\phi = \theta + \frac{\pi}{3}$$

Solution Bank

Arc of circle, centre at $\left(\frac{2-\sqrt{3}}{2}, -\frac{9+2\sqrt{3}}{6}\right)$,

Pearson

this need not be calculated for your sketch.

The locus is an arc of a circle, ends at -4 and 4i, angle subtended being $\frac{\pi}{2}$

 \therefore It is a semi-circle.

(Circle arc has centre (-2, 2), radius $2\sqrt{2}$)

Solution Bank

3 a |z+1+i|=2|z+4-2i| $\Rightarrow |x+iy+1+i|=2|x+iy+4-2i|$ $\Rightarrow |(x+1)+i(y+1)|=2|(x+4)+i(y-2)|$ $\Rightarrow |(x+1)+i(y+1)|^2 = 2^2 |(x+4)+i(y-2)|^2$ $\Rightarrow (x+1)^2 + (y+1)^2 = 4[(x+4)^2 + (y-2)^2]$ $\Rightarrow x^2 + 2x + 1 + y^2 + 2y + 1 = 4[(x^2 + 8x + 16 + y^2 - 4y + 4]]$ $\Rightarrow x^2 + 2x + 1 + y^2 + 2y + 1 = 4x^2 + 32x + 64 + 4y^2 - 16y + 16$ $\Rightarrow 0 = 3x^2 + 30x + 3y^2 - 18y + 64 + 16 - 1 - 1$ $\Rightarrow 3x^2 + 30x + 3y^2 - 18y + 78 = 0$ $\Rightarrow x^2 + 10x + y^2 - 6y + 26 = 0$ $\Rightarrow (x+5)^2 - 25 + (y-3)^2 - 9 + 26 = 0$ $\Rightarrow (x+5)^2 + (y-3)^2 = 25 + 9 - 26$ $\Rightarrow (x+5)^2 + (y-3)^2 = 8$

Therefore the locus of P is a circle centre (-5, 3). (as required)

- **b** radius $=\sqrt{8} = \sqrt{4}\sqrt{2} = 2\sqrt{2}$ The exact radius is $2\sqrt{2}$.

The locus of points P is an arc of a circle cut off at (-4, 0) and (0, 0), as shown below.

Solution Bank

Therefore the centre of the circle has coordinates (-2, 2).

c $r = \sqrt{2^2 + 2^2} = \sqrt{8} = \sqrt{4}\sqrt{2} = 2\sqrt{2}$

Therefore, the radius of C is $2\sqrt{2}$.

d The Cartesian equation of C is $(x+2)^2 + (y-2)^2 = 8$.

Further Pure Maths 2

Solution Bank

4 e Finite area = Area of major sector ACO + Area ΔACO

$$= \frac{1}{2} (\sqrt{8})^2 \left(2\pi - \frac{\pi}{2} \right) + \frac{1}{2} (4)(2)$$
$$= \frac{1}{2} (8) \left(2\pi - \frac{\pi}{2} \right) + 4$$
$$= 4 \left(\frac{3\pi}{2} \right) + 4$$
$$= 6\pi + 4$$

 $\pi + 4$.

Finite area bounded by the locus of P and the x-axis is
$$6\pi + 4$$
.
b, **c**, **d** Method (2):
 $\arg z - \arg(z+4) = \arg\left(\frac{z}{z+4}\right)$
 $= \arg\left[\frac{x+iy}{(x+4)+iy}\right]$
 $= \arg\left[\frac{x+iy}{(x+4)+iy} \times \frac{(x+4)-iy}{(x+4)-iy}\right]$
 $= \arg\left[\frac{x(x+4)-iyx+iy(x+4)+y^2}{(x+4)^2+y^2}\right]$
 $= \arg\left[\left(\frac{x(x+4)-iyx+iy(x+4)+y^2}{(x+4)^2+y^2}\right) + i\left(\frac{y(x+4)-yx}{(x+4)^2+y^2}\right)\right]$
 $= \arg\left[\left(\frac{x^2+4x+y^2}{(x+4)^2+y^2}\right) + i\left(\frac{xy+4y-xy}{(x+4)^2+y^2}\right)\right]$
 $= \arg\left[\left(\frac{x^2+4x+y^2}{(x+4)^2+y^2}\right) + i\left(\frac{4y}{(x+4)^2+y^2}\right)\right]$
 $= \arg\left[\left(\frac{x^2+4x+y^2}{(x+4)^2+y^2}\right) + i\left(\frac{4y}{(x+4)^2+y^2}\right)\right]$
Applying $\arg\left(\frac{z}{z+4}\right) = \frac{\pi}{4} \Rightarrow \frac{\left(\frac{4y}{(x+4)^2+y^2}\right)}{\left(\frac{x^2+4x+y^2}{(x+4)^2+y^2}\right)} = \tan\left(\frac{\pi}{4}\right) = 1$
 $\Rightarrow \frac{4y}{x^2+4x+y^2} = 1$
 $\Rightarrow 4y = x^2 + 4x + y^2 - 4y$
 $\Rightarrow (x+2)^2 - 4 + (y-2)^2 - 4 = 0$

$$\Rightarrow (x+2)^2 + (y-2)^2 = 8$$
$$\Rightarrow (x+2)^2 + (y-2)^2 = (2\sqrt{2})^2$$

C is a circle with centre (-2, 2), radius $2\sqrt{2}$ and has Cartesian equation $(x+2)^2 + (y-2)^2 = 8$.

Solution Bank

5 a Curve *F* is described by |z| = 2|z+4|. First, note that *z* can be written as z = x + iy: |x+yi| = |2x+2yi+8|. Next, group the real and imaginary parts $|x+yi|^2 = 2|(x+4)+yi|^2$. Square both sides $|x+yi|^2 = 2^2|(x+4)+yi|^2$ $x^2 + y^2 = 4(x+4)^2 + 4y^2$ $x^2 + y^2 = 4(x^2+8x+16) + 4y^2$ $x^2 + y^2 = 4x^2 + 32x + 64 + 4y^2$ $4x^2 + 32x + 64 - x^2 + 4y^2 - y^2 = 0$ $3x^2 + 32x + 3y^2 + 64 = 0$ $x^2 + \frac{32}{3}x + y^2 + \frac{64}{3} = 0$ Completing the square for *x*

$$\left(x + \frac{16}{3}\right)^2 + y^2 = \frac{64}{9} = \left(\frac{8}{3}\right)^2$$

Thus we see that F is a circle centred at $\left(-\frac{16}{3},0\right)$ with radius $r=\frac{8}{3}$

b

c The circle is centred at $\left(-\frac{16}{3}, 0\right)$ and its radius is $r = \frac{8}{3}$. This means that it stretches out from $-\frac{8}{3}$ to $\frac{8}{3}$ along the imaginary axis. Thus $-\frac{8}{3} \leq \text{Im}(z) \leq \frac{8}{3}$

Solution Bank

6 We are given curve defined by |z-8| = 2|z-2-6i|. To visualise this, express z as real and imaginary parts and square both sides

$$|x-8+yi| = 2|x-2+yi-6i|$$

$$|x-8+yi|^{2} = 2^{2}|x-2+yi-6i|^{2}$$

$$(x-8)^{2} + y^{2} = 4(x-2)^{2} + 4(y-6)^{2}$$

$$x^{2} - 16x + 64 + y^{2} = 4x^{2} - 16x + 16 + 4y^{2} - 48y + 144$$

$$3x^{2} + 3y^{2} - 48y + 96 = 0$$

$$x^{2} + y^{2} - 16y + 32 = 0$$

$$x^{2} + (y-8)^{2} - 64 + 32 = 0$$

$$x^{2} + (y-8)^{2} = 32 = (4\sqrt{2})^{2}$$

So this curve is a circle centred at (0,8) with radius $r = 4\sqrt{2}$. Now the largest and smallest values of $\arg(z)$ will be found at the points of tangency of the circle to the lines going through the origin. These are shown below as z_1 and z_2 .

We can calculate the distance x from the origin to A using Pythagoras Theorem: $x^{2} + r^{2} = 8^{2}$

 $x^2 = 64 - 32$

$$x = 4\sqrt{2} = r$$

So the triangle created by the origin, z_1 and the centre of the circle is a right-angled isosceles triangle,

so the angle $\triangleleft COA = \frac{\pi}{4}$. Similarly, $\triangleleft COB = \frac{\pi}{4}$. Thus we conclude that $\arg(z_1) = \frac{\pi}{4}$ and $\arg(z_2) = \frac{3\pi}{4}$. So for any *z* lying on this circle we have $\frac{\pi}{4} \leq \arg(z) \leq \frac{3\pi}{4}$

Further Pure Maths 2

Solution Bank

7 **a** We want to sketch the curve S satisfying $\arg\left(\frac{w-8i}{w+6}\right) = \frac{\pi}{2}$. We have

$$\arg\left(\frac{w-8i}{w+6}\right) = \arg\left(w-8i\right) - \arg\left(w+6\right) = \alpha - \beta = \frac{\pi}{2}, \text{ where } \arg\left(w-8i\right) = \alpha \text{ and } \arg\left(w+6\right) = \beta.$$

Since the constant angle is $\frac{\pi}{2}$, S is a semicircle from (0,8) anticlockwise to (-6,0) but not including these two points.

b The centre of this semicircle lies in the middle of the line connecting (-6,0) and (0,8), i.e. at (-3,4). The radius can be found be using Pythagoras Theorem: $r^2 = 3^2 + 4^2 = 25$ r = 5Thus the Cartesian equation for *S* can be written as $(x+3)^2 + (y-4)^2 = 25$, x < 0, y > 0.

Remember to specify the range of x and y. Here the inequalities are strict since (-6,0) and (0,8) are not included in the curve.

c The argument of an imaginary number z is the angle between the line connecting z to the origin and the real axis.

For curve S the smallest such angle is for z = 8i and the largest for z = -6. Remember that the endpoints are not included in the curve, so we have $\frac{\pi}{2} < \arg(z) < \pi$

Further Pure Maths 2

Solution Bank

- 7 d The point furthest to the left is -8+4i, so the smallest possible value of $\operatorname{Re}(z)$ is -8. The endpoints of the semicircle are not included in the curve, so we need to use a strict inequality for the largest value of $\operatorname{Re}(z)$. Thus $-8 \leq \operatorname{Re}(z) < 0$.
- 8 We have $\arg(z-1) \arg(z+3) = \frac{3\pi}{4}$, $z \neq -3$. Let L_1 be the half-line satisfying $\arg(z-1) = \alpha$ and L_2

be the half-line satisfying $\arg(z+3) = \beta$. From the initial equation we have $\alpha - \beta = \frac{3\pi}{4}$

Now considering the triangle APB we see that $P\hat{B}A + A\hat{P}B = D\hat{A}P$

$$\hat{APB} = \hat{DAP} - \hat{PBA} = \alpha - \beta = \frac{3\pi}{4}$$

So, as α and β vary, the angle *APB* remains constant at $\frac{3\pi}{4}$ So the locus will be an arc going anticlockwise from *A* to *B*:

Solution Bank

8 (continued)

Now we know that the centre of this circle lies on the perpendicular bisector of the line segment connecting *A* and *B*, which has equation x = -1. Let *C* be the centre of this circle.

We know that
$$A\hat{D}B = \frac{3\pi}{4}$$
, so $B\hat{C}A = 2\pi - 2A\hat{D}B = \frac{\pi}{2}$.

So *ACB* is an isosceles, right-angled triangle. So we have:

 $r^2 + r^2 = 4^2$

 $r^2 = 8$

 $r = 2\sqrt{2}$

Now, using Pythagoras Theorem again, on triangle *BEC* we have that $CE^2 + 2^2 = r^2$

 $CE^{2} = 4$

CE = 2

So the centre has coordinates C = (-1, -2) and the Cartesian equation of this locus can be written as $(x+1)^2 + (y+2)^2 = 8, y > 0.$

Solution Bank

9 a

By considering the triangle APB, we have that $P\hat{B}A + A\hat{P}B = O\hat{A}P$ $A\hat{P}B = O\hat{A}P - P\hat{B}A$

$$O\hat{A}P - P\hat{B}A = \frac{\pi}{4}$$

Moreover, we know that angles in the same segment of a circle are equal, so we're looking for all numbers z for which $\arg(z+2) - \arg(z+5) = \frac{\pi}{4}$

Thus the equation describing this locus is $\arg\left(\frac{z+2}{z+5}\right) = \frac{\pi}{4}$

Similar to example **a**, we have

$$\arg(z-i) - \arg(z-4i) = \frac{\pi}{6}$$

So
$$\arg\left(\frac{z-i}{z-4i}\right) = \frac{\pi}{6}$$

Solution Bank

9 c

Using the same the same techniques as for part **a** and **b** we have that the locus can be described as 2π

$$\arg(z-(6+i)) - \arg(z-(1+2i)) = \frac{2\pi}{3}$$
$$\arg(z-6-i) - \arg(z-1-2i) = \frac{2\pi}{3}$$
$$\arg\left(\frac{z-6-i}{z-1-2i}\right) = \frac{2\pi}{3}$$

10 a We have |z+3| = 3|z-5|. By representing z as real and imaginary parts and squaring both sides of the equation we see that:

$$|x+3+yi| = 3|x-5+yi|$$

$$|x+3+yi|^{2} = 9|x-5+yi|^{2}$$

$$(x+3)^{2} + y^{2} = 9(x-5)^{2} + 9y^{2}$$

$$x^{2} + 6x + 9 + y^{2} = 9x^{2} - 90x + 225 + 9y^{2}$$

$$8x^{2} - 96x + 216 + 8y^{2} = 0$$

$$x^{2} + y^{2} - 12x + 27 = 0$$

as required.

b The above equation can be rewritten as follows:

$$(x-6)^{2} - 36 + y^{2} + 27 = 0$$
$$(x-6)^{2} + y^{2} = 9$$
$$(x-6)^{2} + y^{2} = 3^{2}$$

So the equation describes a circle centred at (6,0) with radius r = 3

Solution Bank

10 c We have that $\arg(z_1) = \frac{\pi}{6}$ and that $z_1 \in C$. If we write $z_1 = r(\cos\theta + i\sin\theta)$ where $\theta = \frac{\pi}{6}$, we see that $z_1 = \frac{\sqrt{3}}{2}r + \frac{1}{2}ri$. Moreover, we know that z_1 lies on the circle, so if we write $z_1 = x + yi$, x and y must satisfy $(x-6)^2 + y^2 = 3^2$. Comparing the two expressions for z_1 , we obtain $x = \frac{\sqrt{3}}{2}r$, $y = \frac{1}{2}r$. Substituting these values into the circle equation we have:

$$\left(\frac{\sqrt{3}}{2}r - 6\right)^2 + \left(\frac{1}{2}r\right)^2 = 9$$

$$\frac{3}{4}r^2 - 6r\sqrt{3} + 36 + \frac{1}{4}r^2 = 9$$

$$r^2 - 6r\sqrt{3} + 27 = 0$$

$$\left(r - 3\sqrt{3}\right)^2 = 0$$

$$r = 3\sqrt{3}$$

Thus we can write $z_1 = 3\sqrt{3} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$

- 11 a We have the locus of points P satisfying $|z z_1| = k|z z_2|$. Moreover, we know that AP = 2BP, A = (0,6), B = (3,0). Thus we can write |z 6i| = 2|z 3|.
 - **b** Write z = x + yi and square both sides of equation derived in part **a**: |x + yi - 6i| = 2|x - 3 + yi| $|x + yi - 6i|^2 = 4|x - 3 + yi|^2$ $x^2 + (y - 6)^2 = 4(x - 3)^2 + 4y^2$ $x^2 + y^2 - 12y + 36 = 4x^2 - 24x + 36 + 4y^2$ $3x^2 - 24x + 3y^2 + 12y = 0$ $x^2 + y^2 - 8x + 4y = 0$ as required.
 - **c** The equation for circle *C* derived in part **b** can be written as $(x-4)^2 + (y+2)^2 = 20 = (2\sqrt{5})^2$. This means the circle is centred at (4, -2) and has radius $r = 2\sqrt{5}$. We are given the locus of points *w* satisfying $\arg(w-6) = \alpha$ and α passes through the centre of the circle. The centre is at point c = 4-2i and we know that, since the centre lies in the 4th quadrant, $\frac{\text{Im}(c)}{\text{Re}(c)} = \tan(2\pi \alpha)$. Thus we can write $\tan(2\pi \alpha) = -\frac{1}{2}$ and so, since $\alpha \in (0, 2\pi)$, we have that

$$2\pi - \alpha = \tan^{-1} \left(-\frac{1}{2} \right) \approx -0.46$$
$$\alpha \approx 5.82$$

Solution Bank

11 d We know that Q satisfies both $\arg(w-6) = \alpha$ and m+n=b, since it lies on the intersection of the

line and the circle. Thus, writing $q = x_1 + y_1 i$ we have $\frac{y_1}{x_1} = -\frac{1}{2} \implies x_1 = -2y_1$.

Substituting this into the circle equation, we obtain:

 $4y_{1}^{2} + y_{1}^{2} + 16y_{1} + 4y_{1} = 0$ $5y_{1}^{2} + 20y_{1} = 0$ $y_{1}(y_{1} + 4) = 0$ $y_{1} = 0 \text{ or } y_{1} = -4$

 $y_1 = 0$ leads to $x_1 = 0$, so the origin. Thus we take $y_1 = -4$ and $x_1 = 8$. So Q = (8, -4).

Challenge

The equation |z-a|+|z+a| = b describes all points *P* for which the sum of distances from *a* and *-a* is equal to *b*. According to the graph above, we have m+n=b. This is exactly the definition of an ellipse with foci at *a* and *-a* and the major axis of length *b*.

